The Kernels of Radical Homomorphisms and Intersections of Prime Ideals

نویسنده

  • HUNG LE PHAM
چکیده

We establish a necessary condition for a commutative Banach algebra A so that there exists a homomorphism θ from A into another Banach algebra such that the prime radical of the continuity ideal of θ is not a finite intersection of prime ideals in A. We prove that the prime radical of the continuity ideal of an epimorphism from A onto another Banach algebra (or of a derivation from A into a Banach A-bimodule) is always a finite intersection of prime ideals. Under an additional cardinality condition (and assuming the Continuum Hypothesis), this necessary condition is proved to be sufficient. En route, we give a general result on norming commutative semiprime algebras; extending the class of algebras known to be normable. We characterize those locally compact metrizable spaces Ω for which there exists a homomorphism from C0(Ω) into a radical Banach algebra whose kernel is not a finite intersection of prime ideals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completeness results for metrized rings and lattices

The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...

متن کامل

Primal strong co-ideals in semirings

In this paper, we introduce the notion of primal strong co-ideals and give some results involving them. It is shown thatsubtractive strong co-ideals are intersection of all primal strong co-ideals that contain them. Also we prove that the representation of strong co-ideals as reduced intersections of primal strong co-ideals is unique.

متن کامل

Ideal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]

Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...

متن کامل

I-prime ideals

In this paper, we introduce a new generalization of weakly prime ideals called $I$-prime. Suppose $R$ is a commutative ring with identity and $I$ a fixed ideal of $R$. A proper ideal $P$ of $R$ is $I$-prime if for $a, b in R$ with $ab in P-IP$ implies either $a in P$ or $b in P$. We give some characterizations of $I$-prime ideals and study some of its properties.  Moreover, we give conditions  ...

متن کامل

Radical of $cdot$-ideals in $PMV$-algebras

‎In this paper‎, ‎we introduce the notion of the radical of a $PMV$-algebra $A$ and we charactrize radical $A$ via elements of $A$‎. ‎Also‎, ‎we introduce the notion of the radical of a $cdot$-ideal in $PMV$-algebras‎. ‎Several characterizations of this radical is given‎. ‎We define the notion of a semimaximal $cdot$-ideal in a $PMV$-algebra‎. ‎Finally we show that $A/I$ has no nilpotent elemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007